FALL 2024 COS597R: DEEP DIVE INTO LARGE LANGUAGE MODELS

https://princeton-cos597r.github.io/

- Danqi Chen, Sanjeev Arora

Lecture 15:LLM reasoning + inference-time compute (cont'd)

Google DeepMind

Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters

Charlie Snell^{, 1}, Jaehoon Lee², Kelvin Xu^{, 2} and Aviral Kumar^{, 2} [•]Equal advising, ¹UC Berkeley, ²Google DeepMind, [•]Work done during an internship at Google DeepMind

> Q. Large model vs small model + more inference compute? Q. Can test-time computation substitute for pre-training?

[Submitted on 1 Aug 2024 (v1), last revised 14 Oct 2024 (this version, v2)]

Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference for Problem-Solving with Language Models

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, Yiming Yang

[Submitted on 31 Jul 2024 (v1), last revised 16 Sep 2024 (this version, v2)]

Large Language Monkeys: Scaling Inference Compute Sampling with Repeated Sampling

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, Azalia Mirhoseini

- **Sampling**: best-of-n, majority voting, weighted majority voting
- **Search**: MCTS, reward balanced search (this work)

Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters

Charlie Snell^{•, 1}, **Jaehoon Lee**², **Kelvin Xu**^{•, 2} **and Aviral Kumar**^{•, 2} [•]Equal advising, ¹UC Berkeley, ²Google DeepMind, [•]Work done during an internship at Google DeepMind

Q2. This paper only considers the trade-off between pre-training and inference, and they did the analysis using a base model. What do think of the impact of post-training in this pipeline? What are some general ideas of post-training for improving the (mathematical) reasoning of LLMs?

"how one should trade off inference-time and pre-training compute" "We conduct our analysis using the PaLM 2-S* (Codey) base model" "Capability-specific fine-tuning is necessary to induce revision and verification capabilities into the base model on MATH"

Pre-training

Most LLMs

- Different test-time strategies
 - Which strategy works better in what scenario?
 - More discussion on ORMs vs PRMs
- (Brief) How to train LLMs for better reasoning (= post-training)?

This lecture

Image: Jim Fan

Lots of inference methods

Tree of thoughts (Yao et al., 2023)

Self-refine (Madaan et al., 2023)

Stream of search (Gandhi et al., 2024)

Two views of scaling test-time compute

- **Input level**: augment the prompt with additional tokens (repeatedly) "Refining the proposal distribution"
- **Output level:** sample multiple candidates and perform surgery on these candidates "Searching against a (PRM) verifier"

Comparing Test-time and Pretraining Compute in a FLOPs Matched Evauation

Comparison: a 14x larger model with greedy decoding

20 +19.1%Relative Improvement in Accuracy From Test-time Compute (%) 10 +2.2% +2.0% 0.0% -10 -20 -30 Easy Questions m Questions ard Questions <<1 ~=1 >>1

Comparing Test-time and Pretraining Compute in a FLOPs Matched Evauation

Ratio of Inference Tokens to Pretraining Tokens

Search against a verifier

Search against a PRM verifier

- They use a PRM (process reward model) instead of an ORM (outcome reward model) verifier ORM $(P \times S \to \mathbb{R})$ $PRM \left(P \times S \to \mathbb{R}^+ \right)$ $\mathcal{L}_{PRM} = \sum_{i=1}^{K} y_{s_i} \log r_{s_i}$ $\mathcal{L}_{ORM} = y_s \log r_s + 1$
- They use **automated methods** for collecting process supervision instead of PRM800K
 - Distribution shift between GPT-4 and Palm-2 outputs?
- I believe they fine-tuned the same base model as the verifier

$$(1-y_s)\log(1-r_s)$$

$$r_{s_i} + (1 - y_{s_i}) \log(1 - r_{s_i})$$

• PRM can be used for multiple strategies, but ORM can be only used for best-of-n (still PRM works better!)

#1: Best-of-n weighted

- Best-of-n: sample n full solutions and use RM to pick the best one
- Majority vote: get n final answers, and pick the one with the highest vote (no RM used)

Best-of-N

Select the best final answer using the verifier

• Best-of-n weighted: get n final answer, each answer has a weight assigned by RM, aggregate and weights and pick the one with highest sum

Also called self-consistency (Wang et al., 2022)

#1: Best-of-n weighted

• How to get an **aggregated score** from PRM when ranking full answers?

- They used PRM's prediction at the last step as the full-answer score
- Prior work used product or minimum

ORM Verses PRM

Beam Search

Select the best final answer using the verifier

#2: Beam search

- N: beam size
- M: sample M steps from each node

11

#3: Lookahead search

- N: beam size
- M: sample M steps from each node
- k: rolling out up to k steps, and use PRM's score
- Representative of MCTS-style methods

12

Comparing PRM Search Methods

- Beam search is best with less budget
- Best-of-n weighted is the best with large budget

Results

Comparing Beam Search and Best-of-N by Difficulty Level

- Beam search is better for harder questions
- No meaningful progress for hardest questions

Results: Adaptive compute-optimal strategy

Compute Optimal Search

- The optimal test-time strategy should depend on question difficulty!
- Can outperform PRM best-of-N up to 4x less test-time compute
- Note: estimating difficulty of prompts also incurs test-time compute but omitted in this study ("a crucial avenue for future work")

14

Aside: how to collect PRM data automatically?

[Submitted on 31 May 2023] Let's Verify Step by Step

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, Karl Cobbe

The denominator of a fraction is 7 less than 3 times the numerator. If the fraction is equivalent to 2/5, what is the numerator of the fraction?

PRM800K: Dataset contains 800K step-level labels provided by human raters across 75K solutions to 12K problems (MATH 8K training set + 4K test questions).

- wrong-answer solution"

Human annotations

• "We deliberately choose to supervised only up to first incorrect step"

Use active learning to decide which steps to annotate "convincing"

Only evaluates using best-of-n sampling

Process supervision without human labels

MATH-SHEPHERD: VERIFY AND REINFORCE LLMS **STEP-BY-STEP WITHOUT HUMAN ANNOTATIONS**

Peiyi Wang^{1†} Lei Li³ Zhihong Shao⁴ R.X. Xu^2 Damai Dai¹ Yifei Li⁵ Zhifang Sui 1 **Deli Chen**² **Y.** Wu^2 ¹National Key Laboratory for Multimedia Information Processing, Peking University ²DeepSeek-AI ³The University of Hong Kong ⁴Tsinghua University ⁵The Ohio State University {wangpeiyi9979, nlp.lilei}@gmail.com li.14042@osu.edu szf@pku.edu.cn

Project Page: MATH-SHEPHERD

- The quality of a reasoning step = its potential to deduce the correct answer
- For each step, perform N rollouts, estimate how likely it will lead to the correct answer
- They did evaluations on a) best-of-n weighted; b) RL with PRM
- This is the method the Snell et al paper used!

17

Process supervision without human labels

Google DeepMind

Improve Mathematical Reasoning in Language Models by Automated Process Supervision

Liangchen Luo^{1*}, Yinxiao Liu^{1*}, Rosanne Liu¹, Samrat Phatale¹, Harsh Lara¹, Yunxuan Li², Lei Shu¹, Yun Zhu¹, Lei Meng², Jiao Sun² and Abhinav Rastogi¹ ¹Google DeepMind, ²Google

2024-05-22

• They claim using per-step Monte Carlo estimation as in Math-Shepherd is not efficient • They use a complex MCTS process to decide how to do roll-outs and how to collect PRM data

Process supervision without human labels

+PRM800K	+Shepherd	+MiPS
67.6	67.2	67.2

best-of-n sampling

Refining the proposal distribution

Using a revision model

Parallel Sampling

Sequential Revisions

- Pick the best output according to a verifier

•The revision model takes the previous 4 responses and propose a new revision

How to train the revision model?

incorrect answers which are correlated with the final correct answer."

training)?

• **Data**: "Specifically, following the recipe of [1], we pair up each correct answer with a sequence of incorrect answers from this set as context to construct multi-turn finetuning data. We include up to four incorrect answers in context, where the specific number of solutions in context is sampled randomly from a uniform distribution over categories 0 to 4. We use a character edit distance metric to prioritize selecting

[1] Training revision models with synthetic data. Coming soon, 2024.

• Q: Do they have a separate revision model like the verifier model, or it is just the main model (= post-

Results: parallel vs sequential

Revision Model Parallel Verses Sequential

Number of Generations

- Using N sequential revisions is always better than N parallel samplings (when controlling # of generations)
- Q: What about FLOPs?

Results: sequential-to-parallel ratio

• Difficult questions need more parallel computation

Sequential to Parallel Ratio

Results: Adaptive compute-optimal strategy

Compute Optimal Revisions

- The optimal test-time strategy should depend on question difficulty!
- Can outperform best-of-N up to 4x less test-time compute

How to (post-)train LLMs for better reasoning?

Self-Taught Reasoner (STaR)

STaR: Self-Taught Reasoner Bootstrapping Reasoning With Reasoning


```
to carry a small dog?
Answer Choices:
(a) swimming pool
(b) basket
(c) dog show
(d) backyard
```

Q: What can be used

```
(e) own home
```

A: The answer must be something that can be used to carry a small dog. Baskets are designed to hold things. Therefore, the answer is basket (b).

- Generate (rationale, answer)
- If answer is correct, add it back to the fine-tuning data

27

Reinforced Self-training (ReST^{EM})

- Then, we filter these samples using a binary reward to collect the training dataset.

1. Generate (E-step): The language model generates multiple output samples for each input context.

2. Improve (M-step): The original language model is supervised fine-tuned on the training dataset from the previous Generate step. The fine-tuned model is then used in the next Generate step.

Self-improvement and verification methods

Published as a conference paper at COLM 2024

V-STaR: Training Verifiers for Self-Taught Reasoners

Method	GENERATOR DATA	VERIFIER DATA	ITERATIVE
SFT	\mathcal{D}_{SFT}	$m{x} \mathcal{D}_{\mathrm{SFT}} \cup \mathrm{Generated} \ m{x}$	X
Verification	\mathcal{D}_{SFT}		X
STAR	Correct GenerateD _{f-1}		V
RFT (STAR [†] [1 iter])	$\mathcal{D}_{SFT} \cup CORRECT GENERATED$	X	×
STAR [†]	$\mathcal{D}_{SFT} \cup CORRECT GENERATED_{$	X	
V-STAR [1 ITER]	$\mathcal{D}_{SFT} \cup CORRECT GENERATED$	$\mathcal{D}_{SFT} \cup GENERATED$	×
V-STAR	$\mathcal{D}_{SFT} \cup CORRECT GENERATED_{< t}$	$\mathcal{D}_{SFT} \cup GENERATED_{< t}$	✓

Preference optimization for reasoning

Iterative Reasoning Preference Optimization

Richard Yuanzhe Pang^{1,2} Weizhe Yuan^{1,2} Kyunghyun Cho² Sainbayar Sukhbaatar¹* Jason Weston^{1,2*} He He 2

¹FAIR at Meta

²New York University

Next iteration model

Pre-training

Most LLMs

- Post-training: any generic solutions? What data to use?

Final thoughts

Image: Jim Fan

• How do any of these findings generalize beyond a single task?

