FALL 2024 COS597R:
DEEP DIVE INTO LARGE LANGUAGE MODELS

Danqgi Chen, Sanjeev Arora

'> ;8 PRINCETON
UNIVERSITY

Lecture 4: Scaling Laws for Pre-training

https://princeton-cos597r.qithub.io/



https://princeton-cos597r.github.io/

2/3/22,9:31 PM The Bitter Lesson

The Bitter Lesson

Rich Sutton

March 13, 2019

The biggest lesson that can be read from 70 years of Al research is that general methods that leverage
computation are ultimately the most effective, and by a large margin. The ultimateTeasomn for this1s—
Moore's law, or rather its generalization of continued exponentially falling cost per unit of
computation. Most Al research has been conducted as if the computation available to the agent were
constant (in which case leveraging human knowledge would be one of the only ways to improve
performance) but, over a slightly longer time than a typical research project, massively more
computation inevitably becomes available. Seeking an improvement that makes a difference in the
shorter term, researchers seek to leverage their human knowledge of the domain, but the only thing
that matters in the long run is the leveraging of computation. These two need not run counter to each

other, but in }Fractice they tend to. Time spent on one is time not spent on the other. There are

psychological commitments to investment in one approach or the other. And the human-knowledge
approach tends to complicate methods in ways that make them less suited to taking advantage of
general methods leveraging computation. There were many examples of Al researchers' belated
learning of this bitter lesson, and it is instructive to review some of the most prominent.



One thing that should be learned from the bitter lesson is the great power of general purpose methods,
of methods that continue to scale with increased computation even as the available computation
becomes very great. The two methods that seem to scale arbitrarily in this way are search and learning.



Scaling up Deep Learning (history)



Simple question

Suppose you take a deep net and you multiply its size by

C, and its dataset size by C,.

By how much does the compute requirement (in FLOPSs) increase?

FLOP= Floating point operation (addition/multiplication/ division)



Scaling up Deep Learning

ConvNets drove initial successes, esp for vision datasets (CIFAR, ImageNet etc.)

What’s a recipe to scale them up for arbitrary image tasks?

[Tan & Le "19] “Ef

icient (Conv)-Nets” : If you have 2NV factor more compute, scale up

width, depth, image-size by al, ,BN , ;/N where a, 3, ¥ are determined by grid search

on smaller conv-nets for the same task




Compute requirement for forward pass

(transformer)

* Embeddings (Factor 2 for multiply accumulate)

— 2 X seq len X vocab size x d model
* Attention (Single Layer)

— Key, query and value projections: 2 X 3 X seq len x d model x (key size X num_heads)

— Key @ Query logits: 2 x seq_len X seq _len X (key size X num_heads)

— Softmax: 3 X num_heads X seq len X seq _len

— Softmax @ query reductions: 2 X seq len x seq len X (key size X num heads)
— Final Linear: 2 x seq len x (key size X num heads) x d model

* Dense Block (Single Layer)
— 2 xseq len x (d model x ffw size + d model x ffw_size)
* Final Logits

— 2 xseq len xd model x vocab_size

Total forward pass FLOPs: embeddings . num_layers total_attention dense_block® + logits

(In [Kaplan et al’20] approximated as 6ND; N =# parameters, D = # tokens)



Scaling Laws for Neural Language Models

/ 4.2
6 R —— L=(D/5.4-1013)70.09
3.9
94
L 3.3
0]
= 3.
3.0
L = (Cmin/2.3 - 108)~0-050
10-° 1077 10=°> 10* 10"t 10! 108 10°
Compute Dataset Size
PF-days, non-embedding tokens

5.6
4.8 1

4.0

3.2 1

2.4

Jared Kaplan * Sam McCandlish*
Johns Hopkins University, OpenAl OpenAl
et al, 2021

— = (N/8.8 . 1013)—0.076

10° 107 109
Parameters
non-embedding

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of comput used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not

bottlenecked by the other two.



Claims that aged relatively well. ..

Performance depends strongly on scale, weakly on model shape: Model performance depends most
strongly on scale, which consists of three factors: the number of model parameters N (excluding embed-
dings), the size of the dataset ), and the amount of compute C used for training. Within reasonable limits,

performance depends very weakly on other architectural hyperparameters such as depth vs. width. (Section
3)

Smooth power laws: Performance has a power-law relationship with each of the three scale factors
N, D, C when not bottlenecked by the other two, with trends spanning more than six orders of magnitude
(see Figure 1). We observe no signs of deviation from these trends on the upper end, though performance
must flatten out eventually before reaching zero loss. (Section 3)

Universality of overfitting: Performance improves predictably as long as we scale up NV and D in tandem,
but enters a regime of diminishing returns if either IV or D is held fixed while the other increases. The

Universality of training: Training curves follow predictable power-laws whose parameters are roughly
independent of the model size. By extrapolating the early part of a training curve, we can roughly predict the
loss that would be achieved if we trained for much longer. (Section 5)

Transfer improves with test performance: When we evaluate models on text with a different distribution
than they were trained on, the results are strongly correlated to those on the training validation set with
a roughly constant offset in the loss — in other words, transfer to a different distribution incurs a constant
penalty but otherwise improves roughly in line with performance on the training set. (Section 3.2.2)



Claims that did not....

Sample efficiency: Large models are more sample-efficient than small models, reaching the same level of
performance with fewer optimization steps (Figure 2) and using fewer data points (Figure |4).

Convergence is inefficient: When working within a fixed compute budget C' but without any other restric-
tions on the model size N or available data [, we attain optimal performance by training very large models
and stopping significantly short of convergence (see Figure 3). Maximally compute-efficient training would
therefore be far more sample efficient than one might expect based on training small models to convergence,

with data requirements growing very slowly as D ~ C%27 with training compute. (Section 6)

Optimal batch size: The ideal batch size for training these models is roughly a power of the loss only,
and continues to be determinable by measuring the gradient noise scale [MKAT18]; it is roughly 1-2 million
tokens at convergence for the largest models we can train. (Section 5.1)

10x 1increase 1n compute should be allocated to a 5.5x increase 1n model size

and a 1.8x 1ncrease 1n training tokens.

10



Brief Era of Undertrained Mega Models
(2020-22)

Implication of Kaplan et al. [2020] : 10X increase in compute should be

allocated to a 5.5x 1ncrease in model size and a 1.8% 1ncrease 1n training tokens.”

11



Gggher [Rae et al’21, Google]

S parameters, 300B tokens...

Scaling Language Models: Methods, Analysis & Insights from Training Gopher

Model Layers Number Heads Key/Value Size d, .43 MaxLR Batch Size

44M 8 16 32 512 6x 104 0.25M
117M 12 12 64 768 6x 1074 0.25M
417M 12 12 128 1,536 2x107% 0.25M
1.4B 24 16 128 2,048 2x10™4 0.25M
7.1B 32 32 128 4096 1.2x10™% 2M
Gopher 280B 80 128 128 16,384 4x10™ 3M — 6M

Table 1 | Model architecture details. For each model, we list the number of layers, the key/value size,
the bottleneck activation size d,,,4¢], the maximum learning rate, and the batch size. The feed-forward

size is always 4 X dpodel-

12



PaLI\/I [Choudhery et al’22]
PalLM: Scaling Language Modeling with Pathways

[PalLM?2] was a followup

540 B parameters; 7/80B tokens

| | | | Model * E)ifniaifﬁf)rrls)ers Accelerator chips M?l(gﬁizz;(?nps
Design tailored for parallelization — o —_— T3
: . Gopher 280B 4096 TPU v3 32.5%
in TPU v4 pod client-server Megatron-Turing NLG  530B 2240 A100 30.2%
. PaLM 540B 6144 TPU v4 46.2%
architecture (Pathways)
: # of Parameters :
La'ter Stag es yse b|gger Model Layers +# of Heads dmodel (in billions) Batch Size
' PaLM &B 32 16 4096 8.63 200 — 512
batCh SIZES for better PaLM 62B 04 32 8192 62.50 512 — 1024
PaLM 540B 118 48 18432 540.35 512 — 1024 — 2048

gradient estimate (less noise)

Table 1: Model architecture details. We list the number of layers, dyo4e1, the number o
attention heads and attention head size. The feed-forward size dg is always 4 X dp,04e] anc
attention head size is always 256.

Deterministic batches; “fully bitwise reproducible from any checkpoint”.
13



PaLM (the hardware)

< Datacenter Network >
IR

—»
—»

TPU chips
connected by
fast private
interconnects

Cross-pod transfer

gradients
A Compute gradients

(Forward+backward pass) Pod 1 Pod 2

B Apply gradients
Pod 1 \ / Host (many per Pod)
Pod 2 Model Components #| Scheduler (per Pod)

Figure 2: The Pathways system (Barham et al., 2022) scales training across two TPU v4
pods using two-way data parallelism at the pod level.

Figure 2 shows how the Pathways system executes the two-way pod-level data parallelism.

A single Python client constructs a sharded dataflow program (shown on the left in Figure 2)
that launches JAX/XLA (XLA, 2019) work on remote servers that each comprise a TPU
pod. The program contains a component A for within-pod forward+backward computation
(including within-pod gradient reduction), transfer subgraph for cross-pod gradient transfer,
and a component B for optimizer update (including summation of local and remote gradients).

14



Megatron Turing NLG

(Nvidia, 2022)

530B parameters, 270B tokens

monolithic (unlike Google PaLM, PalLM2); served to highlight Nvidia’s

own parallelism solution (NVLInk within a node, InfiniBand across nodes)”

In hindsight, a fairly unexceptional effort....

By combining tensor-slicing and pipeline parallelism, we can operate them
within the regime where they are most effective. More specifically, the system
uses tensor-slicing from Megatron-LM to scale the model within a nhode and
uses pipeline parallelism from DeepSpeed to scale the model across nodes.

15



Deepmind’s effort at finding Scaling Laws

@ DeepMind

Training Compute-Optimal Large Language Models

Jordan Hoffmann*, Sebastian Borgeaud*, Arthur Mensch*, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan,
Erich Elsen, Jack W. Rae, Oriol Vinyals and Laurent Sifre*

“Chinchilla paper”

16



“Compute optimal” : Best heldout cross-entropy given total FLOPs budget

* No constraints on # of GPUs and # Tokens
* |gnores communication latencies Caveat: Minimization
only over architectures,
: training, and datasets
Nope(C), Dope(C) = argmin  L(N,D). ° -
N,D s.t. FLOPs(N,D)=C that were popular in ‘22

—Xperiments: 400 models, sizes 7/0M to 168
Dataset size 5B to 5008
(other hyper-parameters such as batch size, dimension, etc taken from earlier studies)

17



“Compute optimal” : Best heldout cross-entropy given total FLOPs budget

®* No constraints on ;
® |gnores communication latencies

+ of GPUs and # Tokens
Caveat: Minimization
only over architectures,
argmin L(N, D). training, and datasets
N,D s.t. FLOPs(N,D)=C that were popular in ‘22

Nopt(C): Dopt (C) =

Let’s figure out: If L(N, D) = 2 +

400

N1/3

_|_

2000

what is the correct scaling recipe”

D13

18



Table: Scalina Recipe

Parameters FLOPs FLOPs (in Gopher unit) Tokens
400 Million 1.92e+19 1/29,968 8.0 Billion
1 Billion 1.21e+20 1/4,761 20.2 Billion

10 Billion 1.23e+22 1/46  205.1 Billion
67 Billion 5.76e+23 1 1.5 Trillion
175 Billion 3.85e+24 6.7 3.7 Trillion
280 Billion 9.90e+24 17.2 5.9 Trillion
520 Billion 3.43e+25 59.5 11.0 Trillion
1 Trillion 1.27e+26 221.3  21.2 Trillion
10 Trillion 1.30e+28 22515.9 216.2 Trillion

“Chinchilla Scaling Law”

(D ~ 20N is compute-optimal choice)



Main finding

1T
— Approach 1
1008 — Approach 2
" —— Approach 3
% 10B --- Kaplan et al (2020)
g % Chinchilla (70B)
L 108 v Gopher (280B)
% GPT-3 (175B)
Y Megatron-Turing NLG (530B)
100M
7/
10“{'017’ 1019 1021 1023 1025
FLOPs : :
Side-benefit:

Figure 1 | Overlaid predictions. We overlay the predictions from our three different approaches,
along with projections from Kaplan et al. (2020). We find that all three methods predict that current

large models should be substantially smaller and therefore trained much longer than is currently models =>
done. In Figure A3, we show the results with the predicted optimal tokens plotted against the optimal .
faster inference

number of parameters for fixed FLOP budgets. Chinchilla outperforms Gopher and the other large
models (see Section 4.2).

Compute optimal

20



Recap: Cosine LR schedule

1 (t o tw)ﬂ Learning Rate Schedule with Linear Warmup and Cosine Decay
I—q(t) — f T 5 (L o f) [1 T COS ( (T— tw) >] ) 0.10 1 : — LR Schedule

L. = Max LR o
= min LR

1 = total # of iterations

Learning Rate

[, = # of warmup Iterations

|
0 200 400 600 800 1000
lterations

Key Finding: When # of tokens (hence T) changes, use LR schedule for this new T

(DON'’T finish training before hitting the end of the cosine schedule.)

This partly explains why OpenAl’s Scaling Law [Hoffman et al’20] was off..
21



Finding how loss scales with compute and
data

22



leanFlan Cliirves )

T

3.2 1T
1.4T
3.0 1T
‘ 1OOB 63B /’/
0 2.8 o
9 @ » 1008 e
o D 10B P S g
£26 O : . S -
£ - e%® = 108 ,0‘.
— —— 1B [ X ’
2.4 e o
—&- 6‘ 1B
22— 100M - '
2.0 100M , , ,
100M 300M 1B 3B 6B 30B 1017 1019 1021 1023 102 101/ 1019 1041 1023 102°
Parameters FLOPs FLOPs

Figure 3 | IsoFLOP curves. For various model sizes, we choose the number of training tokens such
that the final FLOPs is a constant. The cosine cycle length is set to match the target FLOP count. We
find a clear valley in loss, meaning that for a given FLOP budget there is an optimal model to train
(left). Using the location of these valleys, we project optimal model size and number of tokens for
larger models (center and right). In green, we show the estimated number of parameters and tokens
for an optimal model trained with the compute budget of Gopher.

Qs for class: What functional form does Fig 3 imply for scaling #params and #tokens?

23



Method to find Scaling Law

# tokens C = total compute

N = # parameters D =

—)

Nopt(c):Dopt(C) = argmin L(N, D)°
N,D s.t. FLOPs(N,D)=C

“mpirical finding from prev. slide : N = KC* D = K~'C? for

some a, ff  (functional form confirmed by all 3 approaches..)

Approach Coeff. a where N,,; o« C* Coeff. b where D, « C”
1. Minimum over training curves 0.50 (0.488,0.502) 0.50 (0.501,0.512)
2. IsoFLOP profiles 0.49 (0.462,0.534) 0.51 (0.483,0.529)
3. Parametric modelling of the loss 0.46 (0.454,0.455) 0.54 (0.542,0.543)

Kaplan et al. (2020) 0.73 0.27




Estimated held-out c-e loss given D, N

A B

L(N,D)=E+ N0.34 T 10.28

with E = 1.69, A = 406.4, B = 410.7.

Fitting the decomposition to data. We effectively minimize the following problem

%ninﬁ Z Hubers (LSE(a — alogN;,b — Blog D;, e) — log Li),
OE0E pun i

where LSE is the log-sum-exp operator. We then set A, B, E = exp(a), exp(b), exp(e).

25



“Chinchilla Law”: Amended

26



v1: Accounting for inference cost

O
7
O train smaller model
22 on more data
-
g P R R /B
8 I ;
0- Chinchilla ' 13B
optimal :
13B : :

4.5x1022 5.2x1022
Pretraining FLOPs

Depending on how many tokens are

extracted in inference, higher cost of

overtrained 7

5 Mmodel may be worth it

Beyond Chinchilla-Optimal:

Accounting for Inference in Language Model Scaling Laws

Nikhil Sardana' Jacob Portes! Sasha Doubov! Jonathan Frankle !

e.g., Llama1 7B trained on 1.4T tokens (Chinchilla recipe) in Feb’23,

but a year later LIama3 8B was trained on 5T tokens

21



Correcting Mistakes in Chinchilla Paper
[Epoch Al, 2024]

Motivation: Accurate prediction on models that are not compute-optimal

We reconstruct a subset of the data in Hoffmann et al.’s paper by extracting it from their plots and fit the
same parametric model. Our analysis reveals several potential issues with Hoffmann et al.’s estimates of

the parameters of their scaling law:

1. Hoffmann et al.’s estimated model fits the reconstructed data poorly, even when accounting for
potential noise Iin the data reconstruction and excluding outlier models.

2. The confidence intervals reported by Hoffmann et al. are implausibly tight given the likely number of
data points they had (~400). Obtaining such tight intervals would require hundreds of thousands of
observations.

3. The scaling policy implied by Hoffmann et al.’s estimated model is inconsistent with their other
approaches and the 20-tokens-per-parameter rule of thumb used to train their Chinchilla model.

482.01 2085.4
L(N,D) =1.8172 - 520 | 08523
A0.3478  71)0.3658

28



Another major Chinchilla Amendation
(data-constrained trainina)

Scaling Data-Constrained Language Models

Niklas Muennighoff ! Alexander M. Rush ! Boaz Barak ° Teven Le Scao !

Aleksandra Piktus ! Nouamane Tazi ' Sampo Pyysalo® Thomas Wolf ! Colin Raffel ! 50



Motivation : Not enough data

e.g., Chinchilla law suggests training 530B model on 11T tokens

Assembling a dataset of 11T tokens may involve too many compromises (ie low-quality)

Specialized corpora (law, medicine, wikipedia etc.) are small; essentially fixed size.
Scaling up with web data throws off the data-mix proportions

30



From paper abstract [Meunnighoff et al’23]

regimes. Specifically, we run a large set of experiments varying the extent of data
repetition and compute budget, ranging up to 900 billion training tokens and 9
billion parameter models. We find that with constrained data for a fixed compute
budget, training with up to 4 epochs of repeated data yields negligible changes to
loss compared to having unique data. However, with more repetition, the value of
adding compute eventually decays to zero. We propose and empirically validate
a scaling law for compute optimality that accounts for the decreasing value of
repeated tokens and excess parameters. Finally, we experiment with approaches
mitigating data scarcity, including augmenting the training dataset with code data
or removing commonly used filters. Models and datasets from our 400 training runs

31



Final test loss

Experiments with 4.2B model

Return on compute when repeating

3.4+ O
3.2 '.‘ 2
. l" o O
| O%e
3.0- |
O |
2.8- | | //
o | '
! /
2 6 - o A o S
|
2.4 |
:
2.21 Up to= 4 epochs | Rapidly diminishing
repeating is almost 1 returns for
5 0L2 good as new data i more repetitions
| 12B 488  120B 480B  1.2T
(1) (4) (10) (40)  (100)
Tokens
(Epochs)

e ¥ Models trained
Loss assuming repeated data is worth the same as new data
Loss predicted by our data-constrained scaling laws

What is your takeaway from this

{

¢

gure I

" you're training a model

nat wi

| be widely used? (eg Llamag3)

32



2.8B parameters trained 4.2B parameters trained
for 55B tokens for 84B tokens

3.4

w
N

w
o

N
o

Validation loss

2.6 : \\\
\Nx,_,

8.7B parameters trained
for 178B tokens

2.4
58 15B 25B 35B 45B 55B 5B 25B 45B 65B 85B 5B  40B 100B  140B  180B
Training tokens Training tokens Training tokens
Epochs
1 2 3 — 4 —5 — 7 — 14 —— 44
FLOP budget (C) Parameters (/V) Training tokens (D) Data budget (D¢)
9.3 x 1020 2.8B 55B {55,28,18,14,11,9,4,1.25)B
2.1 x 1041 4.2B 384B { 84,42,28,21,17,12,6, 1.9}B
9.3 x 10?1 8.7B 178B {178, 88,58, 44, 35,25,13,4}B

Figure 4: Validation Loss for Different Data Constraints (IsoFLOP). Each curve represents the

‘erent numbers of epochs

same number of FLOPs spent on an egual size model. Colors represent dif

due to repeating because of data constraints. Parameters and training tokens are set to match the
single-epoch compute-optimal configurations for the given FLOPs. Models trained on data that 1s
repeated for multiple epochs have consistently worse loss and diverge if too many epochs are used.

33



Thought process in deriving Chinchilla-like law

D’ = "effective # of tokens”

N’ = 7effective # of parameters”

t of tokens with repetition. Up = unique tokens

A B
L(N,D) = o - T + FE
Let D = total 1
et Uy = optimal # parameters for U, tokens (as per Chinchilla)
Define R o 1 R al 1
efine = — = — —
U7 Uy

D/

Hypothesis: There exist learnable parameters R*, R;\‘j such that

NIZUN+UNR7V(1—€R7V )

—ffective datasize = Up + UDR;‘;(I — € %)

Rp

Motivation:

—Xponential

drop-off In effectiveness

34



Fitting

A
L(Un,Up,Rn,Rp) =

this model

| B

(Un + UnR3y (1 —e N )@

DO best fit using Huber loss

(Modification of MS

— Ry I — R

| 92 P

- 5a- 1L |a| < 0
Lsla) =< < oy ep -
0 (_|(l‘ —50) 1 |a| > 0

-, less sensitive to outliers)

(UD -+ UDRE(l — 6R—IDD))ﬁ

R;‘\; = 5.31, R;; = 15.39 fit the data quite well to give the expressionl

021
L(UDa RN7 RD) —

1488

- 1.87

(UN+5.3°UN(1 — €

54°))085  (Up +15.4-Up(l —e

where Uy = Up - 0.051

D ))0-35

35



Two ways to overcome Ilmlted text data

Meunnighof et al]

Note: once you play with data mix, held-out perplexity is no longer a good
measure. (Why?) Customary to evaluate via performance on downstream evals

36



Setup

4.2B model, trained with 84B tokens. Tokens could be (i) unique (i) repeated
(i) code tokens (iv) filtered using perplexity

W W A A S

For these experiments, we set a maximum data budget (D) of 84 billion tokens. For repetition and
code filling, only a subset of D 1s available and the rest needs to be compensated for via repeating
or adding code. For both filtering methods, we start out with approximately twice the budget (178
billion tokens), as it 1s easier to gather noisy data and filter it than it 1s to gather clean data for training.
For perplexity filtering, we select the top 25% samples with the lowest perplexity according to a
language model trained on Wikipedia. This results in 44 billion tokens that are repeated for close
to two epochs to reach the full data budget. For deduplication filtering, all samples with a 100-char
overlap are removed resulting 1in 21 billion tokens that are repeated for four epochs during training.
See Appendix N for more details on the filtering procedures.

Note: “lowest perplexity” == highest probability (hopefully, “most like wikipedia®)

37



Repeat Repeat

Repeating DATA BUDGET

Filling with
Code

DATA BUDGET

CODE DATA

Filtering

Deduplicate /
Perplexity-filter

DATA BUDGET

Interesting Settings: (i) Code + Data (up to 50-50 is good)
(i) apply perplexity filter to get 42 B tokens, then 2 epochs

(-
(o))

Average Performance on 19 tasks (%)

(-
&

N
B

N
N

N
=

(-
®

Strategy

-&— Repeating data

| =@= Filling missing data with Python code
v Perplexity-filter then repeat

Y% Deduplicate then repeat

100%

50% 25% 10%
Data Budget

Caveat: Code Is known
to Improve reasoning,
and they didn’t test for this

38



Next time

1

—mergence” phenomenon for LLMs

Controversy whether it is real or illusory

Can we understand it at some level?

39



