
FALL 2024 COS597R:
DEEP DIVE INTO LARGE LANGUAGE MODELS

Danqi Chen, Sanjeev Arora

Lecture 4: Scaling Laws for Pre-training

https://princeton-cos597r.github.io/

https://princeton-cos597r.github.io/

2

3

4

Scaling up Deep Learning (history)

Simple question

5

Suppose you take a deep net and you multiply its size by
 and its dataset size by .

By how much does the compute requirement (in FLOPs) increase?

C1 C2

FLOP= Floating point operation (addition/multiplication/ division)

Scaling up Deep Learning

6

ConvNets drove initial successes, esp for vision datasets (CIFAR, ImageNet etc.)

What’s a recipe to scale them up for arbitrary image tasks?

[Tan & Le ’19] “Efficient (Conv)-Nets” : If you have factor more compute, scale up
width, depth, image-size by , , where are determined by grid search
on smaller conv-nets for the same task

2N

αN βN γN α, β, γ

Compute requirement for forward pass
(transformer)

7

Total forward pass FLOPs: embeddings ̧num_layers ¹total_attention ̧dense_blockº + logits

(Factor 2 for multiply accumulate)

(In [Kaplan et al’20] approximated as 6ND; N =# parameters, D = # tokens)

8

et al, 2021

9

Claims that aged relatively well…

10

Claims that did not….

10× increase in compute should be allocated to a 5.5× increase in model size
 and a 1.8× increase in training tokens.

11

Brief Era of Undertrained Mega Models
(2020-22)

Implication of Kaplan et al. [2020] : 10× increase in compute should be
allocated to a 5.5× increase in model size and a 1.8× increase in training tokens.”

Gopher [Rae et al’21, Google]

12

280B parameters, 300B tokens…

PaLM [Choudhery et al’22]

13

PaLM: Scaling Language Modeling with Pathways

540 B parameters; 780B tokens

Design tailored for parallelization
 in TPU v4 pod client-server
architecture (Pathways)

Later stages use bigger
batch sizes for better
gradient estimate (less noise)

[PaLM2] was a followup

Deterministic batches; “fully bitwise reproducible from any checkpoint”.

PaLM (the hardware)

14

Megatron Turing NLG

15

(Nvidia, 2022)

530B parameters, 270B tokens

monolithic (unlike Google PaLM, PaLM2); served to highlight Nvidia’s
own parallelism solution (NVLink within a node, InfiniBand across nodes)*

In hindsight, a fairly unexceptional effort….

By combining tensor-slicing and pipeline parallelism, we can operate them
within the regime where they are most effective. More specifically, the system
uses tensor-slicing from Megatron-LM to scale the model within a node and
uses pipeline parallelism from DeepSpeed to scale the model across nodes.

16

Deepmind’s effort at finding Scaling Laws

“Chinchilla paper”

17

“Compute optimal” : Best heldout cross-entropy given total FLOPs budget

• No constraints on # of GPUs and # Tokens
• Ignores communication latencies Caveat: Minimization

only over architectures,
training, and datasets
that were popular in ‘22

Experiments: 400 models, sizes 70M to 16B
 Dataset size 5B to 500B
 (other hyper-parameters such as batch size, dimension, etc taken from earlier studies)

18

“Compute optimal” : Best heldout cross-entropy given total FLOPs budget

• No constraints on # of GPUs and # Tokens
• Ignores communication latencies Caveat: Minimization

only over architectures,
training, and datasets
that were popular in ‘22

Let’s figure out: If what is the correct scaling recipe?L(N, D) = 2 +
400
N1/3

+
2000
D1/3

Table: Scaling Recipe

19

“Chinchilla Scaling Law”
(is compute-optimal choice)D ≈ 20N

Main finding

20

Side-benefit:
Compute optimal
models =>
faster inference

Recap: Cosine LR schedule

21

LR(t) = ℓ +
1
2 (L − ℓ) 1 + cos ((t − tw)π

(T − tw)) .

Max LR
min LR
total # of iterations
of warmup iterations

L =
ℓ =
T =
tw =

Key Finding: When # of tokens (hence T) changes, use LR schedule for this new T
 (DON’T finish training before hitting the end of the cosine schedule.)

This partly explains why OpenAI’s Scaling Law [Hoffman et al’20] was off..

22

Finding how loss scales with compute and
data

IsoFlop Curves

23

Figure 3 | IsoFLOP curves. For various model sizes, we choose the number of training tokens such
that the final FLOPs is a constant. The cosine cycle length is set to match the target FLOP count. We
find a clear valley in loss, meaning that for a given FLOP budget there is an optimal model to train
(left). Using the location of these valleys, we project optimal model size and number of tokens for
larger models (center and right). In green, we show the estimated number of parameters and tokens
for an optimal model trained with the compute budget of Gopher.

For each FLOP budget, we plot the final loss (after smoothing) against the parameter count in
Figure 3 (left). In all cases, we ensure that we have trained a diverse enough set of model sizes to see
a clear minimum in the loss. We fit a parabola to each IsoFLOPs curve to directly estimate at what
model size the minimum loss is achieved (Figure 3 (left)). As with the previous approach, we then fit
a power law between FLOPs and loss-optimal model size and number of training tokens, shown in
Figure 3 (center, right). Again, we fit exponents of the form #=>B / ⇠0 and ⇡=>B / ⇠1 and we find that
0 = 0.49 and 1 = 0.51—as summarized in Table 2.

3.3. Approach 3: Fitting a parametric loss function

Lastly, we model all final losses from experiments in Approach 1 & 2 as a parametric function of
model parameter count and the number of seen tokens. Following a classical risk decomposition (see
Section D.2), we propose the following functional form

!̂(#, ⇡) , ⇢ +
�

#U +
⌫

⇡V
. (2)

The first term captures the loss for an ideal generative process on the data distribution, and should
correspond to the entropy of natural text. The second term captures the fact that a perfectly trained
transformer with # parameters underperforms the ideal generative process. The final term captures
the fact that the transformer is not trained to convergence, as we only make a finite number of
optimisation steps, on a sample of the dataset distribution.

Model fitting. To estimate (�, ⌫, ⇢, U, V), we minimize the Huber loss (Huber, 1964) between the
predicted and observed log loss using the L-BFGS algorithm (Nocedal, 1980):

min
�,⌫,⇢,U,V

’
Runs 7

HuberX
⇣
log !̂(#7, ⇡7) � log !7

⌘
(3)

We account for possible local minima by selecting the best fit from a grid of initialisations. The Huber
loss (X = 10�3) is robust to outliers, which we find important for good predictive performance over
held-out data points. Section D.2 details the fitting procedure and the loss decomposition.

6

Qs for class: What functional form does Fig 3 imply for scaling #params and #tokens?

Method to find Scaling Law

24

N = # parameters D = # tokens C = total compute

Empirical finding from prev. slide : for
some (functional form confirmed by all 3 approaches..)

N = KCα, D = K−1Cβ

α, β

Estimated held-out c-e loss given D, N

25

26

“Chinchilla Law”: Amended

v1: Accounting for inference cost

27

Depending on how many tokens are
extracted in inference, higher cost of
overtrained 7B model may be worth it

e.g., Llama1 7B trained on 1.4T tokens (Chinchilla recipe) in Feb’23,
 but a year later Llama3 8B was trained on 5T tokens

Correcting Mistakes in Chinchilla Paper

28

[Epoch AI, 2024]
Motivation: Accurate prediction on models that are not compute-optimal

29

Another major Chinchilla Amendation
(data-constrained training)

Motivation : Not enough data

30

e.g., Chinchilla law suggests training 530B model on T tokens 11

Specialized corpora (law, medicine, wikipedia etc.) are small; essentially fixed size.
Scaling up with web data throws off the data-mix proportions

Assembling a dataset of T tokens may involve too many compromises (ie low-quality)11

31

From paper abstract [Meunnighoff et al’23]

32

What is your takeaway from this
figure if you’re training a model
that will be widely used? (eg Llama3)

Experiments with 4.2B model

33

Thought process in deriving Chinchilla-like law

34

Let total # of tokens with repetition. unique tokens

Let optimal # parameters for tokens (as per Chinchilla)

Define

D = UD =
UN = UD

RD =
D
UD

− 1 RN =
N
UN

− 1

Motivation: Exponential
drop-off in effectiveness Effective datasize D′ = = UD + UDR*D(1 − e− RD

R*D)

Hypothesis: There exist learnable parameters such that R*D, R*N

”effective # of tokens”
”effective # of parameters”

D′ =
N′ =

Fitting this model

35

 fit the data quite well to give the expressionlR*N = 5.31, R*D = 15.39

Do best fit using Huber loss

(Modification of MSE, less sensitive to outliers)

36

Two ways to overcome limited text data
Note: once you play with data mix, held-out perplexity is no longer a good
measure. (Why?) Customary to evaluate via performance on downstream evals

[Meunnighof et al]

Setup

37

4.2B model, trained with 84B tokens. Tokens could be (i) unique (ii) repeated
(iii) code tokens (iv) filtered using perplexity

Note: “lowest perplexity” highest probability (hopefully, “most like wikipedia”) ⟹

38

Interesting Settings: (i) Code + Data (up to 50-50 is good)
(ii) apply perplexity filter to get 42 B tokens, then 2 epochs

Caveat: Code is known
to improve reasoning,
and they didn’t test for this

Next time

39

“Emergence” phenomenon for LLMs

Controversy whether it is real or illusory

Can we understand it at some level?

