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LLMs: Background



Survey of older ideas
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• [Shannon 1950s] Information theory view. Language = distribution on strings of 
words.  

• n-gram models  (modern terminology: n = “context length”)
 

• Information-theoretic measure of goodness cross-entropy loss; estimator for 
KLdivergence 

        

• Can be viewed as a form of self-supervised learning : “predict the next word using 
previous n words”. n = context length 

• ELMO, BERT, ROBERTA (2017-19): Predict missing word. 

Pr[w1w2…wL] = ∏
i

Pr[wi+1 |w1w2…wi] ≈ ∏
i

Pr[wi+1 |wi−n+1…wi]

∑
i

log
1

Prθ[wi+1 |w1w2…wi]



Ideas leading up to current LLMs
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• Deep learning attempts starting 1990s (Schmidhuber, Bengio, Collobert-Weston 
etc.) 

• Recurrent RNs as attempt to get “arbitrary context length”; but optimization doesn’t 
scale 

• Attention-based models. (First modern use in 2013, then in 2014 in the first LLM 
with attention.) “Attention is all you need.” [2017].  

• Adapted architectural and optimization innovations of preceding years: 
normalization, residual connections, adaptive gradient methods, LR schedules, .. 

• ELMO, BERT, ROBERTA, T5 (2017-19): “Predict the masked word” 
• Scaling Laws (2019-21). Reason why LLMs  (i) got scaled up (GPT1 to 4) (ii) are 

expensive 
• Next word prediction goes much further than almost anybody expected.. 



Technical innovations since 2021
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•  Instruction-tuning (converts next-word predictor to useful chat agent) 
      Idea (instruct-GPT):  

(i) Fine-tune on (Q, A) pairs.  (“supervised fine-tuning”) 
            (ii) Self-improvement via simple RL ideas, e.g. RLHF, PPO, DPO,.. 
• “Alignment problem” (how to ensure the AI agent does not answer 

“inappropriately”). Current solutions sort-of-OK. Need work 
• Improved high-level reasoning (math, code etc.). Involved all aspects of the 

training pipeline. (Current capabilities were conjectured to require 5-10 years of 
progress!) 

•  Long context length (millions). Sort-of works; still a work in progress.  
• Rapid improvements in small models. (distillation, pruning, training on synthetic 

data) . Llama 3.1 8B   >  PaLM 540B.  
• Fast inference/falling costs . (frontier model cost is down 10x in a year, cost for 

the same capability is 25x lower, e.g. free Llama3, Gemma 2 etc.) 
•  Agents, not simple Q&A 
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About the course



Goal : Detailed look at LLM Research 
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• model architecture
• data preparation
• algorithm details (learning rates, optimizers..)
• pre-training, including assembling a data corpus
• post-training/alignment 
• deployment optimizations; fast inference
• enhancing models via post-training (eg math, reasoning, specialized knowledge)
• LLM evaluations: design, judging quality etc.
• how alignment may change as models get stronger (debate, weak-2-strong etc.)
• societal issues: legal frameworks, economic effects, copyright etc.
• some advanced topics TBD (eg distillation, long context, data selection, RL-based ideas)

Focus on conceptual understanding and research rather than engineering.
Highly interactive format



 Course structure
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• Some lecture + discussion every  time.  
• 30 min “debate” involving a group of 5 (12x times starting week 4) 
• Project presentations (last 3 lectures)

Requirements
• Do the readings in depth, participate in class discussions 
• Maintain “journal” (responses to prompts about readings) 
• Scribe notes for a lecture (group of 3) 
• Participate (in small groups) in a “debate” about an assigned reading 
• Course project (in groups of 2-3). Do in-class presentation + Long report



Grading in the course
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• class participation + reading responses 30% 
• debate 15% 
• lecture scribing 10% 
• final project 35% 
• project presentation 10%



Debate Format
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Inspiration1: “AI safety via Debate” [Irving, Christiano, Amodei’18] + followup works 
Inspiration 2: Conference review/rebuttal/decision process.

• Readings of the lecture (1-2 papers). Everybody reads lightly (different from lecture). 
• 1 “presenter” presents paper in 8 min 
• Two teams of 2 debaters ea 
• “Critics” point to potential flaws/unconvincing experiments/incomplete reasoning. 
• “Proponents” defend, give justifications etc.  (could draw upon follow-up papers) 
• Later, everybody collaborates to write a “meta-review” (  2 pages) ≈

Your goal: Learn to read papers (including your own writing) with a critical eye. 
 Develop taste, insight, rigorous reasoning 
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How LLMs are created: Overview



Recap: Transformer architecture

12

(How many people need this?)



Step 0. Create series of small LLMs

Goal: Derive “scaling laws" to “predicting” best hyper parameters for large-
scale LLM: Architecture,  corpus size, data mixtures, learning rates, etc. 
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(e.g., 100M, 300M, 700M, ..)

Training compute-optimal  
LLMs; Hoffman et al’22



Step 1. Pre-training Corpus
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Biggest component: Scraped text from web, cleaned up (e.g., remove adult content,  
copyrighted text, junk html etc.) and deduplicated. Cleaning uses tiny/small models. 

Specialized Data: Code, books, wikipedia, journals, reddit etc. 

How much data? Early “compute optimal” models were (in hindsight) undertrained 

Current trend: Prioritize high-capability in small models; overtrain (as much data as possible) 
Llama 3 8B:  # pre-training tokens/ # parameters = 600   

Llama1 dataset 
(1.4T tokens)



Step 2: Pre-training 
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Cosine LR schedule  
 with linear warmup

Simplest version: Create batches as per data mix, train transformer 
via AdamW on cross-entropy loss with cosine LR schedule

Enhancements: (i) Add other losses (e.g., masked prediction); 
(ii) vary data mix a few times (initial, middle and late stages) 
(iii) special treatment of copyrighted or private data  
(iv) lots others 

e.g., “Middle stage” (around 30% -40%)  may emphasize code. 
  “Late stage” (80% or 90%) may emphasize high-quality data-sources  
(wikipedia, books, arxiv)  



Step 2: Pre-training (contd)
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Simplest version: Create batches as per data mix, train transformer 
via GD on cross-entropy loss with cosine LR schedule

Careful engineering everywhere, especially wrt efficient use of  
hardware (sharding, balancing communication/computation, etc.), 
numerical issues, recovery from errors and hardware failures etc..

Llama3 paper:



Stage 3: Instruction-tuning
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Turns next-word predictor into instruction-following agent 

Simplest version: Fine-tune on (i) Q&A data of various kinds (eg science, math) 
(ii) “general instruction-following” Q&A data (“Write me a 3-page essay on famines in South  
Asia and how they influenced historical events”) 

Q&A data sourced from humans (potentially skilled ones). Expensive! 

2nd stage usually involves self-improvement via some reinforcement learning 
(may involve training additional “reward model” to rank the model’s answers by quality) 

Simplest RL: “Best of n”



Stage 3: Instruction-tuning (contd)

18

Turns next-word predictor into instruction-following agent 

Advanced version (e.g., Llama3 paper) 
(i) extensive Q&A (some multi-turn) in code,  math, reasoning, factuality, tool-use (e.g. using python 
interpreter, web-search etc.). 
(ii) Lots of synthetic data supplemented with human annotations 
(iii) this stage is also used to enable “long context” (8K —> 128K)  

 



Stage 4: Alignment/Safety
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Goal: AI should be Helpful, Safe, Courteous, Accurate, Informative etc.  
(HHH: “Helpful, Honest, Harmless”)

(A General Language Agent Assistant as a Laboratory for Alignment. Askell et al ’21) 

e.g., how should the AI answer “How many pills of 500mg tylenol would be lethal?” 

General ideas (i) do pre-training carefully to avoid hallucination of facts (ii)  
instruction-tuning with “good” responses  
(iii) RL-like technique or “Constitutional AI” to improve response quality wrt desired qualities 
(iii) avoid “jailbreaks” by including an overseer/filter model to detect unsafe content. 

(Constitutional AI: Harmlessness from AI Feedback. Bai et al ’22) 
(Training Language Models to follow Instructions with Human Feedback. Ouyang et al’22)



Self-improvement step

Constitutional AI
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(Constitutional AI: Harmless from AI Feedback.  Bai et al, 2022) 

“We find that as language model capabilities improve, AI identification of harms improves significantly. 
Furthermore, chain-of-thought reasoning improves this ability, and leads to evaluations that are becoming 
competitive with preference models trained on human feedback labels.”

• AI model is given constitution + tricky prompt (generated via  “red teaming”) 
• Once it generates an answer, it is asked to self-reflect (“Chain of thought”) 

on whether the answer was consistent with constitution. And suggest ways 
in which the answer could be improved.  

• Fine-tune AI on many such prompts and its own past answers

“Constitution”: List of a couple dozen general principles of good behavior

Caveat: As in rest of this lecture, many details omitted. The paper omits yet more.. 



Stage 5: Tricks for Fast Inference 
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• Quantize to reduce memory requirement (e.g., Llama3 8B run on MacBooks) 
• Use pipelining to improve GPU utilization. 
• Various generation heuristics (random sampling from distribution isn’t always best)
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A few things that intrigue me



Some things that interest me..
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That’s all for today. Questions?
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(I have a few undergrad level slides on attention and transformers, if of interest)
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LLMs: The transformer architecture
(Training = gradient descent (backprop!) on cross-entropy loss of the word probabilities 
computed by this architecture.) 

“Attention is all you need” Vaswani et al 2017.   
(Ideas appeared earlier, this paper identified the key core and made it sing)



Vision : convolution :: Language : ??
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Recap: Why convolutions make sense for vision
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The camera can be placed arbitrarily to capture the scene

 Nothing special about any specific pixel . With another  
 camera position this pixel would have been at another location  
⟹ (i, j)

(i′ , j′ )

Important: This property holds only for individual convolution filters.  
Multilayered nets end up applying a sequence of convolutions (not to 
mention pooling layers)  which have the effect of aggregating information  
from the entire image. 



Attention layer in a transformer
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How transformer makes sense of:  
“The trophy didn’t fit in the suitcase because it was too big."

Trading pit, Chicago Board of Trade. (c) AP 1995

Analogy we’ll use: trading pit 



Attention layer in a transformer
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Input to transformer: “The trophy didn’t fit in the suitcase because it was too big."

"The trophy" "didn’t fit" “in” “the suitcase” “because” “it” “was too big”

I have something that might be considered 
valuable, or large (maybe giant cup). Who 
needs info about this object to complete 
their action?

"I’m dealing with an issue of not fitting. 
I need to know which object is involved 
and what’s causing the issue!"

“I see signs that
something caused
something else”

“Seeing situation where 
something was too large
for some purpose. What?”

“ ” = Info that th trader has 

“ ” = Info that th trader seeks

keyi i
queryi i

Vectors in ℜd}

The trading pit 



Attention layer: Weight sharing!
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Input to transformer: “The trophy didn’t fit in the suitcase because it was too big."

"The trophy" "didn’t fit" “in” “the suitcase” “because” “it” “was too big”

“ ” = Info that th trader has 

“ ” = Info that th trader seeks

keyi i
queryi i

Vectors in ℜd}

Actually a single “trader” (i.e., neural net) is used to “trade” at all positions. 

# traders = # of words being processed at a time by LLM  (denoted by C )



Attention layer: Weight sharing!
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Input to transformer: “The trophy didn’t fit in the suitcase because it was too big."

"The trophy" "didn’t fit" “in” “the suitcase” “because” “it” “was too big”

 = offer vector of th trader 

 = demand vector of th trader 

 = bundle of goods this trader offers 
All vectors are in 

⃗keyi i
⃗queryi i⃗valuei

ℜd

Vector “purchased” by trader  in this round 
=          

where 

j

∑
i

sj
i

⃗valuei

  =(sj
1, sj

2, …, sj
C)

softmax( ⃗queryj ⋅ ⃗key1 , ⃗queryj ⋅ ⃗key2 , …, ⃗queryj ⋅ ⃗keyC)



Attention layer: Weight sharing!
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Input to transformer: “The trophy didn’t fit in the suitcase because it was too big."

 = offer vector of th trader 

 = demand vector of th trader 

 = bundle of goods this trader offers 
All vectors are in 

⃗keyi i
⃗queryi i⃗valuei

ℜd

Vector “purchased” by trader  in this round 
=          

where 

j

∑
i

sj
i

⃗valuei

  =(sj
1, sj

2, …, sj
C)

softmax ( 1

d
( ⃗queryj ⋅ ⃗key1 , ⃗queryj ⋅ ⃗key2 , …, ⃗queryj ⋅ ⃗keyC))

Operation at each layer: For each location   compute its “purchase” vector 
Pass its current  three vectors and “purchase” vector through a small FC net  
to get three vectors for this location for use in the trading at next higher layer. 

j

NB: At the output layer, the “trading” is followed by softmax that produces a probability  
distribution for predicting the next word 



Basic attention unit
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softmax ( QKT

dk ) V

Output of attention module

Q = matrix of  ’s 

K = matrix of ’s 

V = matrix of ’s

⃗queryi⃗keyi ⃗valuei

This unit is replicated at each word position (analogous to convolution)

“Attention is all you need” Vaswani et al 2017.  


